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ABSTRACT

The numerical integration technique to be utilized in the reduction and

analysis of data gathered in the USAF Aeroballistic Research Facility located

at Eglin Air Force Base is described. The method of Chapman and Kirk has

been developed into a system of digital computer programs which may be easily

and routinely used in the analysis of data derived from spark range firing.

The equations of motion for a missile/projectile in free-flight are derived

in this report utilizing the six degrees of freedom. The parametric equations,

philosophy, and methods of implementation are also derived and discussed.

Brief descriptions of the computer program involved are also given.

Distribution limited to U. S. Government agencies only;
this report documents test and evaluation; distribution
limitation applied February 1974. Other requests for
this document must be referred to the Air Force Armament
Laboratory (DLDL), Eglin Air Force Base, Florida 32542.
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SECrION I

INTRODCrION AND BACKGROINI)

This report will discuss the rationale and mathematics involved in the

implementation of a numerical integration data reduction technique to be

utilized with the USAF Aeroballistic Research FacilityI , Air Force Armament

Laboratory, Eglin Air Force Base, Florida.

This numerical technique was reported on by Chapman and Kirk2 in 1969.

Goodman (1966) and Knadler4 (1969) also reported on this general technique

under separate efforts. Whyte and Beliveau of General Electric Company
5'6'7

(1969, 1970) applied this technique to ballistic range, yaw sonde, and wind

tunnel data. Beginning in 1971 General Electric Company, under various in-

house efforts and United States Government contracts, has developed and

applied this technique to a wide variety of exterior ballistic and interior

ballistic analysis problems. 
8-15

In October 1972 General Electric Company delivered to Arnold Engineering

Development Center a series of numerical integration data reduction computer

programs13 for use with VKF Range G. These programs are now being utilized

in the routine production of free-flight data from Range G.

The capability exists in these pregrams to analyze up to three experi-

ments simultaneously and to identify Mach number non-linearities in addition

to angle of attack non-linearities.

The original programs were obtained by AFATL from AEDC and have been

modified to complement the large computational capability of ADTC. Most

importantly, the programs have been tailored to provide maximum flexibility

of use while decreasing the tasks required of the project engineer.

The inputs and outputs of the various computer programs will be dis-

cussed briefly in this report. A forthcoming document will report on the

details, flow charts, input, output, and options.



SECTION II

AEROBALLISTIC RESEARCH FACILITY

The United States Air Force Aeroballistic Research Facility is part of

the Air Force Armament Laboratory located at Eglin Air Force Base, Florida.

This facility, now under construction, is described in detail in reference 1.

The construction is expected to be complete and instrumentation installed by
summer 1974.

This facility, essentially a ballistic range, is constructed of concrete

and is approximately 780 feet in length. The basic instrumentation will be

SO spark shadowgraph stations. Each station will consist of two sparks and

two cameras located in the wall and floor (pit).

The stations may be set up at 131 locations along the range thus allow-
ing considerable spacing flexibility to enhance data acquisition for contem-

plated test programs.

Timing data will be provided at each of the 50 stations by electronic

chronographs. They are operated with an IR detection system and. the spark

apparatus.

The estimated accuracies of measurements are as follows:

Time ±0.1 microsecond

Position ±0.0013 foot

Angle ±0.10 degree

This range will be continuously calibrated through the use of catenary

wires suspended in front of the wall and ceiling reflective screens. Refer-

ence beads will be precisely positioned along the wires, with the location of

all beads known to 0.0001 foot.

2



SEC7T'TON ITT

STATEMENT OF PROBLEM

The angular and translational motion of a projectile as it traverses a

ballistic range may be observed, measured, and documented by means discussed

in the previous section and reference 1. The following basic data are ob-

tained as a function of time: Xe, Ye' Zes O, *, and 4. Knowing the physical

properties of the projectile and the atmospheric properties of the range

facility, the problem becomes one of identifying the aerodynamic coefficients

and their magnitudes which are causing the observed motion.

The most prevalent method of analyzing ballistic range data is known as

16-18 . 19,20
linear theory. Murphy MacAllister and others of BRL as well as

Nioli 1s9 ,21 ,22  23
and Eikenberry have developed this theory to the extent

that certain types of non-linearities car also be analyzed. However, unless

many cycles of data are present and/or multiple experiments conducted, the

only non-linear coefficient which can be consistently identified is the cubic

pitching moment.

In 1969 Chapman and Kirk of NASA Ames, in attempting to analyze free

flight data, developed a technique which allowed the differential equations

of motion to be used directly in the fitting process.

Linear theory, on the other hand, depends on using the closed form

solution to the equations of motion in the fitting process. This technique

is very effective providing the assumptions required to obtain the closed

form solution, i.e., small velocity drop, nearly constant pd/2V, linear aero-

dynamics, and small angular motion are not drastically violated.

None of the above assumptions are required when using the differential

equations of motion directly. The only drawbacks or restrictions are in the

identification of the coefficients which are to be solved for and the efficient

coding of a computer program such that a solution may be found at a reasonable

cost.

3!



The system in use at AEDC and Eglin AFB uses the linear theory programs

in concert with the numerical integration programs such that the user has

fewer problems in obtaining adequate reductions. Linear theory reduction-and

numerical integration reductions may be directly compared as they occur in the

same computer run.

4
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SECTION IV

THEORY AND EQUATIONS

1. EQUATIONS OF MOTION

The equations of motion are derived in a fixed plane coordinate system.

The Euler amgles, as well as the missile-fixed velocities and earth-fixed

velocities, are integrated numerically (step-wise) to simulate the projectile

motion.

This formulation was chosen for the following reasons:
1. Allows largest time step for integration.
2. Most accurate for spin-stabilized or fast spinning projectiles.

k'3. Consistent with data acquisition.

4. Allows slight aerodynamic asymmetries.

The following assumptions are contained in the derivations: I
1. No earth rotation effect on angular motion
2. Flat earth

3. Rotational symmetry (C a Cn. , Iy = I z, etc.)

4. Trim moments and forces are small.

5. Aerodynamic coefficients are expanded as polynomial functions

of the sine of the total angle of attack.

These derivations are patterned after Barnett's of Picatinny Arsenal.
24'25

These references are interesting in that they describe the advantages of one

type of coordinate system as opposed to another. Barnett discusses the pro-

blem associated with obtaining adequate (accurate) simulations of spin sta-

bilized projectiles using a coordinate system which is attached to the projec-

tile and rolling with it. His conclusions and those of the authors of this

report are that adequate simulations of spin stabilized projectiles may most

reliably be made with the fixed plane system. In addition a run time cost

savings of over 25 to 1 are realized when using a fixel plane simulation as

opposed to a rolling coordinate system simulation of questionable accuracy.

5



a. Six Degrees of Freedom

Force Equations of Motion:

- ~ d R

E F = m (Earth-fixed derivative) (1)

d t

E F = Summation of forces acting on missile

R = Vector from earth center to current missile C.G.

iH' JH' k' = Unit vectors aligned with missile-fixed coordinate system
(non-rotating)

w= Angular velocity of missile-fixed coordinate system-relative to
earth- fixed coordinate.

WW 1+(j3(2)XH H + YH JH +" ZH (

in terms of missile-fixed coordinates

Equation (1) may be rewritten as:

whre =tie EF m d2ER dE'V

E F = m- (3)

where: V =time rate of change of R, i.e., missile velocity

Equation (3) may be rewritten as follows:

dE V

F= m - =m x (4)
dt dt

6



=:u l + v JH +w kH  (6)
dt H
d t

where all quantities in the right-hand side of Equation (4) are understood

to be expressed in missile coordinates (H). Intuitively, the presence of the

w x V term relates the motion of the missile coordinate system, to which

forces and moments are referred, to earth-fixed coordinates.

Combining Equations (4), (5), and (6), and performing the indicated

operations, one then obtains the three component force equations:

Z. FH = m [u + YH w - W ZH v3;(in the 1-H direction)

SF = m [V + WZH u - W w](in the "H direction) (7)

YH ZHdirection)(7

E FZH= m Cw + WXH v - wy u];(in the direction)

Moment Equations of Motion:

Treating the moment equation in a similar manner to the force equation:

_. d E dHJ
ZL=- = - + w x J (8)

dt dt

Z L = Summation of moments acting on missile

J = Angular momentum of missile

(WT) = Total angular velocity of the missile (rolling coordinates)

relative to earth coordinates.

7



j X(T) XH *1I + 1y (WT)YH jH + y ('WTZH k (9

where I are the moments of inertia of the missile about the longitudinal
x y

and traverse axes, respectively. Note that the assumption of rotational

symmetry (I = I ) is implicitly made.

d

4H

d t ,~ (wT)XH 3-H + Iy ("'T)YF 3H + Ty (W)ZH H (0

Appropriately combining Equations (2), (8), (9), and (10) results in

the component equations for the moments:

- I x (T)iYH + wyH jy T)ZH - wZH y )YH

' LYH = Ixy (wT)YH + wZH 1y (YT)XH - wXH ly (wT)ZH (11)

E LZH = ly (wT)ZH "M ly (wT)YH- wYH Ix (wT)XH

AERODYNAMIC FORCES

Three aerodynamic forces are considered:

Axial drag - Along missile axis

Normal force - Perpendicular to missile axis in plane of yaw

Magnus force - Perpendicular to plane of yaw

8

11i



These forces are illustrated in Figure 1 (arrows indicate positive
directions).

! H

PLANE OF YAW

NORMAL FORC
VELOCITY OF MISSILE
RELATIVE TO AIR

AXIAL DRAG I-

A

MAGNUS FORCE

Figure 1. Force System

The axial drag acts along the negative i H axis which, by definition, is

directed from the CG towards the nose of the missile.

p d2 T V)2

(Axial Drag) XH 8 - X

-_ _x

Where q = dynamic pressure = 1/2 p V2

A = cross sectional area

The normal force components act opposite to the directions of v and w.

Using known geometry, one can deduce the components of the normal force:

(Normal Force) = - q A CN. sin- v2 +2

where: CNa The slope of the Normal Force coefficient plotted as a function

of sin a.

9



sin = v2 + w2 /V

-V(N(Noaa For Fce)H = -q A CN

(Normal Force)zH =  N - aAC

Na V

The Magnus Force acts in a direction perpendicular to the plane of yaw'.
As in the case of the Normal Force, using known velocity geometry the Magnus

Force components are:

(Magnus Force) = VAd (T)XH yp a sin a 'I W2
2 +w 2

Where CY = The slope of the Magnus Force coefficient plotted as a function

of sin a.

(Magnus Force)- w
SForce)y 2 V (T) XH -Ypa VW

(Magnus Force)zH 2 V TXH C v

Summary of Forces: (excluding gravity)

[ Fy - A C q A d - W

=- 2-" + TTX-VCypX11 (12)

-- W A d (wT) vZ FZH = - VA CNc V 2 V paXHCypt

10



AERODYNAMIC MOMENTS

The following moments are considered:

Pitching Moment - Perpendicular to plane of yaw
Magnus Moment - In plane of yaw
Damping Moment - Perpendicular to missile axis
Spin Deceleration - Along missile axis
Trim Moment - Perpendicular to missile axis

Rotational sign convention is indicated in Figure 1.

Pitching Moment Components:

(Pitching Moment)YH = q A d Cin sin a v +

Where: C = The slope of the Pitching Moment coefficient plotted as functionma
of sin a.

-- w
(Pitching Moment)yH = q A d ma V

(Pitching Moment)zH = - q A d av

Magnus Moment Components:

q A
2

(Magnus Moment)yH -- (WT)H C sin IY 2V T Hnpa 22

Where: Cnpa = The slope of the Magnus Moment coefficient plotted as a function

of sin a.

(Magnus Moment) q A d2  
v

(Magnus Moment)zH W 2 npa V
ZH 2 V (wT)XH p

U-
" - ~j1



Damping Moment Components:

(Damping Moment)yH 2 V (w T)YH Cmq

Where: C = Damping Moment coefficient.
mq

(Damping Moment)ZH 2 A (T)

Spin Deceleration Moment:

(Spin Moment) = 2 V (WT)XH C1

C = Spin deceleration coefficient

Trim Moment Components:

This moment is induced by missile asymmetries and is assumed negligible

for spin-stabilized missiles.

(Trim Moment)yH = - qA d [Cm6  6 sin - 6A cos 4)]

(Trim Moment)zH = qA d [C6 (6 B COS + 6A sin s)]

Where: Cm6  = Trim Moment Coefficient

6A' B Components of the trim angle

=Roll angle

12



Summary of Moments:

F - 2
Y q Ad

X1 2 V T XClp

w 2v
ZLYH q A d C V+ (T)X Cnpa

q A d2  (13)
+ 2 V (T)YH Cmq - q A d [Cm 6 (6B sin -

6A Cos )]

Z - - v qAdw
E LZH -q A d Cma V +  2 V (wT)XH Cup V

2 (wT) + qA d [C (6 cos b + 6 sin d)]
2 V TZH mq m6 B

Substituting Equations (12) into (7) and Equations (13) into (11), the

six-degree-of-freedom equations describing the motion of a missile (excluding

gravity) can be written as:

Forces:

- qA~x = m [u + yH w - WzH v]; (in -H direction)  (14)

-- - - [v + u - w direction(155

CNcV 2 V (w)XH CYpa v= m [w +wXH wi H

r1

r' CnczV 2 V ( C)ypa m [w +wXHv - YHu] directon(16

13



Moments:

1 ' ~~~XJ WY 'y(WTzH y (oT)vl;rottd2
2 V (wT~)X11 Cl 'x(TX + -Y 'y( ZH Z yTYH 1rta nH (17 )

2 2
q A d T np 2V (wT)YH Cmq

q A d [Cm (6B sin -6 A Cos ]=Iy(TY+

s[ 6B ~A ~y ( YH + wZH Ix (wT) XH

-WXH I (rT)ZH (rotation-H (18)

2
-q AdC 2LA+ d - w d -- ma V+ 2 V-- ( i Cnpa V 2 V T ZH Cmq

+ q A d [C M6 (6 B Cos + 6 A sin @) y (W T)ZH + XHIy(TY

h u n 4 2I (Tte a cor t at i n k-: (19)

Equations (14) through (19) are of limited use until one knows explicitly

how the missile-fixed coordinate system (H) is moving with respect to earth-

fixed coordinates (E). Further, one often has vector quantities expressed in

earth coordinates (such as wind and gravitational attraction) which must be

properly introduced into the (H) coordinates. Therefore, additional relation-

shins between the (H) and (E) coordinates must be derived. In particular, one

must know how the (H) coordinate system is oriented relative to the (E) coordi-

nates at all times. The use of Euler angles seems to be the most straight-

forward approach. In it, one rotates a coordinate system, initially coinci-

dent with the (E) system, about selected axes so that after the rotations

14



are performed in a specified sequence, this coordinate system will have the

same orientation as the (H) system. These rotations are illustrated by

Figure 2.

Z
z Z X

0~ I.
MISSILE AXi*S

I

x HORIZONTAL

II

x y. z - Earth Axis Coordinates

x Y ' - Intermediate Axis Coordinates
(after first rotation - through '"

,.1
X, Y, Z - Missil Axis Coordinates

8 and * are the Euler angles

Figure 2. Euler Coordinate System

is



Figure 2 shows the (H) and (E) coordinate system. The missile-fixed

rolling coordinate system (M) is defined as simply the (H) coordinate system

rotating about the missile axis at an angular rate of 4 through the angle 4.

Previously defined quantities in the equations of motion may now be related

through the Euler angles to earth-fixed coordinates as follows:

=-t sin 0

wYH

" ZH =tpcos 0

H =X-H O tan O

(wT)XH =4+ w = - sin (20) I

(WT)YH = YH =0

=w =ipCos06
(WT)ZH ZH

* 2
(WT)XH - wZH tan - WZH Osec 0

=4-tan 0 cos - p sin ) - */cos 0

(WT)YH =0

(WT)ZH = i cos 0- 'p0 sinO

Through appropriate substitvtion of Equations (20), the equations of

motion may be rewritten as:

Force Equations:

S A CX =m [u+ 0 w - cos 0 v] (21)

(In i (X) direction)

16



;NOL1 ~ 2 V Ypa V i it o) m U CS 1

w sinO] 
; In JH (Y) direction

SA 2 d sin 0) m[w v sin8 (23)

q AC~ V 2 V ypc, v

SU] 
In direction')

Moment Equations:

2 
si 0) (4

A cp (d - sin 0) =I[x [-tan 6 cos0e-P0sine) (24)

2V I1p

- 1cos ] ; R ation about % (X)

q A d Cma V 2 V npcV 
(

q k d [CM6 (6B Sin - 6A cos y)] = y + I x cos o ( - i sine)

A 
2

.2 iottion 
about TH CY)

+~~o sin 0)cse i_j Ad C - 2  - w - sin e) + - 4' cos 0 (26)

- ma npctVCm

+ A d [Cm 6 (6B Cos € + 6A sin *)] = y (4 cos 0 - ' o sin 0)

+1 y- 'sin 0) - I x 0 ( - sin 0) rtion about (Z

17



4

Equations (21) through (26) are the 6-DOF equations of motion expressed

in terms of Euler angles without gravitational effects.

Gravitational Force:

Assumption: Flat Earth

(Gravity) = -mg kE
E +ZE

where kE i5 unit vector in the +ZE direction

Replacing FE by its representation in (H) coordinates, one obtains:

-mg kE: mg sin 0 - mg cos 6 kH
EH Hi

The gravity force can now be substituted directly into Equations (21)

and (23).

Spin is defined as the total angular velocity of the missile about its

Sown axis.

Spin = p = (WT)XH =43- p sin 8

The 6-DOF equations of motion, upon substitution of the gravitational

force and spin identity and rearranging terms, are written as follows:

Force Equations:

u= -q CX + g sin 0 w + Cos 8 v (27)

+ -- A d (28)

A- m2V yp - cos [u + w tan (8

18



w: L w (29)- A g Cos 0+ (sin 6) V+6u (9

Moment Equations:[2
= Ad D + tan O~ cos 6 - sine]+e*/coso (30)

I X2V i p *Cs(0

x2
q A -- w 2 - p2v

C ma + 2 d C V (31)
y mcz 2V1 mq 2V Iy npa V

q y C
-- A • IX

I s (C6 B sin @ - 6A os)] - p cos 0 p

.2
- 2 o sin e

- 2 _ 2
q q [ Cos 0 + q A d P c W f32)
I y ma + 2V I 2VIy np - 32

+ A dCm6 (
6B Cos + 6 A sin +)] 2 e p sin 6

+ Op IX/Iy I /cos 8

For the data reduction technique being discussed, the aerodynamic coeffi-

cients C npa' and previously defined are assumed to be non-linear and

are therefore expanded to include higher order dependencies on the angle of

attack, . These dependencies are assumed to exist as a function of sin c1.

The following non-linearities are assumed:

19



Cm'  m'  3 i2 - 4  6 "•C-V
=C s + Cm a + a(V

C C + C sin2 a

mq mq mq2

C'na  npt i 2 -- -

C pot C +C npa3 sina Cnpa5 sin
4 a

The preceding moment coefficient expansions are utilized in the angular

motion programs.

Similar expansions on the force coefficients are used in the translational

equations of motion which will be developed next.

b. Translational Equations of Motion

Tn the derivation, the previously defined force equations of motion will
be utilized with the addition of a trim force in the missile Y-Z plane, de-

fined as components in the missile Y and Z directiuns. This trim force will

account for any slight asymmetries present (intentional or otherwise) in the

missile configuration.

u q - A C X + g sin 0 w + cos 0 v (33)
m

v -+ q A --- p cos 0 [u + w tan O]m NcV m 2V pcVj

-CN6A (6B cos - 6Asin ) M  (34)

w -m aV m 2 V Ypa g cos 0 + sin 0 v

+0u CN6A (6A cos + 6B sin ) ) (35)

20



The following expressions relate the earth-fixed velocities to the missile

velocities using the definitions of the Euler angles:

V u Cos 0 cos - v sin + w sin 0 cosp
Xe

(36)
VYe u Cos sin + v cos + w sin 0 sin

VZe = - U sin 0 + w cos 0

Taking the derivative of Equations (36) with respect to time, one obtains:

VXe u cos 0 cos - v sin + w sin 0 cosp (37)

u sin e cos 'p - u cos : sin ' 'p-v cos ' 'p

sin 'p '

+ W Cos 0 Cos 0- w sin 6 sin !

V =u cos 0 sin + v cos + w sin 0 sin (38)
Ye

- u sin e sin 6 p+ u cos 6 cos ' 'p-v sin ' ' 4

+ w cos 0 sin ' 0 + w sin 0 cos
I

VZ -usin + wCos 0 - u cos 0 w sinO 0 (39)

Substitution of Equations (33), (34), and (35) into (37), (38), and (39)

provides the translational equations of motion:

V L o A V 2  -- A V 2 - v
Vxe " C os 0C os + p _ NA 1 sin (40)

p A V2 si 0os pA pdv V sin,X 2m 4 m Vc

21



-d Vg 'gpa I s i n 0 cos

p A 2 [CN (SB  Cos 6 sin 0)sin
24m NSpA B

" CN6 (6Acos € + 6B sin J) sin 8 cos ']

: " _ p A A B 2 -y XcsOsn¢2m Ca o #(1

p AV 2 -i p-A-V2  Cos (41)VYe fm V X cs6in 2 m ENa V

pA sin 0 sin + p Apd v yp wcos

2 m ~~cvllTI 4 m Yc

F- I
p 4A pd V ypE sin 6 sin

p 2-A (6B cos Asin ) cos

+ CNA (6 A cos + 6B sin )sin sin]

" AV2  oAV 2 -- os

Ve=-si n  0 - cos N. (42)
Ze 2 m 2 2m Nv

p ALd V ycos
4 m Ypa V

The following non-linearities are assumed for the force coefficients: I

2
C C +C + C (V
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2
Cpa =C pa + CYPa3 C

2 2-
Where: c = sin a

V° = Reference Velocity (constant)

c. Modified Six Degrees of Freedom

As ballistic ranges are level and the ballistic trajectories flat, the

equations of motion from which the parametric equations are derived can be
modified. This is a special case and cannot be applied to high angle fire

problems (y > 300) such as yaw sonde reductions. Reference 11 discusses
e

the consequences of this assumption in the high angle fire mode.

The following assumptions are made:

" 8m = e, m = 'p
0m *M

and from linear theory (Ref. 17)

C = Cm - CNa 2 Ty/mdSmq (3D) mq 'N y

C =C +C 2 1/md2nPa(3D) npa Na x

Essentially what is done is to approximate the 6-DOF equations with 3-DOF

equations and allow correction for the effect on the damping of CNa.

The effect of trajectory curvature is accounted for by the angular rate

g cos e/V.

0 (3D) 0 (6D) + g cos 0/V
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This term results in the generation of the yaw of repose.

It should be pointed out and understood that the modified equations are

only used in deriving the parametric equations and are not used for computing

theoretical motions. Equations (28), (29), (31), and (32) are utilized for

motion generation.

Approximate 6-DOF Equations

Using the previous assumptions, Equations (31) and (32) reduce to:

=Mm sin 0 cos +Mmq [0 + g cos O/V]

Mnpa sin -Mm6  0 cos 0 p Ix/Iy
2

- 0p cos 0 sin 6

C [M sin +M cos 6 + M sin e cos + Mm8
ma mq npa

+ (0+ g cos e/V) p y+ 2 sin e (0 + g cos e/V) *]/cos 0

Where:

A d 2 V,
M -- Y- (Cm + Cm C + C C + C (V V)I
mai qyC~ Mai ma5  mav 0

2  2/md 2 ]
mq A d [CC m f c 2 "Na y

2 4 2]
M _p (C + C -+ C e + Ca 21I/md]
npa 2 V I y npa npa 3  npa5 Na xC. 1
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=q Ai (Cm6 (6 sin 6A cos)1

A d
--q -f- [C 6 (S. cos + i )

M6 -A 6A sin 4)
y

As the term g cos e/V is usually small and 1.0 > cos e > 0.9, this term

is considered a constant when partial derivatives are taken.

d. Roll Equation

As previously derived and stated in Equation (30) the 6-DOF roll equation

is:

A 2Sl ( - sin 0) + tan 0 os -e sin e) + -2 V I x  cos8

Cose6

The preceding equation may be restated in the following equivalent form:

4 : p + 4 sin e (30a)

[,I P 2 V Ix p (30b)

The above two equations are integrated simultaneously to produce the roll

angle, roll rate,. and spin rate with the advantage of fewer higher order terms

than equation (30).

will be computed from the available ' versus time history. It should

be pointed out that the roll reduction is accomplished at the same time as

the translational motion reduction.

i,, - ~A dt ~pA fin cant moment (C 6 q and a velocity dependent C F
- ~ 16 f lp LlpV

(V 0 V) 2 V dI P are added to equation (30b) for expanded capability.
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2. CHAPMAN-KIRK TECHNIQUE

The procedures utilized in the implementation of the Chapman-Kirk technique

are as follows:

1. Formulate equations of motion which are adequate to simulate the ex-

[perimental data.

a. Select a broad general set of aerodynamic terms.

b. Define possible non-linear terms; i.e., Mach number and angle of

attack.

2. Equations of motion are partially differentiated with respect to each

coefficient to form a set of parametric differential equations.

3. Integrate equations of motion numerically utilizing:

a. Estimated Aerodynamic Coefficients

b. Estimated Initial Conditions

4. Integrate parametric equations numerically to obtain values for the
partial derivatives of the state variables with respect to each coefficient.

5. A differential corrections equation is set up from a Taylor expansion

of the dependent variable of the equations of motion.

6. The experimental data are then compared to the dependent variables in

a least squares sense,and corrections to the coefficients and initial condi-

tions are obtained from the differential correction equations.
I

7. Step 3 is repeated with adjusted coefficients and initial conditions,

and the process is repeated until convergence is achieved.

26
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a. Differential Corrections and Least Squares Theory

The methods of least squares and differential corrections are employed

by computer programs to obtain corrections to be applied to the coefficients

so that the solutions to the equations of motion are a better fit to the test

data. A brief description of this technique will be given considering two

data sets. The primary goal of this description is to illustrate how two or

more data sets may be handled simultaneously. Consider the following

equations:

a +C a +C a + C = 0

a2 + Cla2 + C a2 C3

a Angles from data set one

a 2 f Angles from data set two a

Although the above equations are linear, it is well known that aerodynamic

equations of motion are often non-linear in nature. Regardless of the linear-

ity or non-linearity of the equations of motion, the theory of least squares

is not sufficient in itself to solve for aerodynamic properties, and differ-

ential corrections are employed. The above equations are presented only for

simplicity and clarity. The real equations of motion cover all six degrees

of freedom and are coupled.

Let: C4 = alO = initial condition on a 1

C5 = a = initial condition on ai

C = a20 = initial condition on a26 2

C7 = a 20 = initial condition on a 2

C1 , C2 , and C3 are constant coefficients to be determined and are common

to both data sets.
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t Let: t = The variable parameter (time)

f (C1, C2, C3, C4, C5 , t)
2 :g (1' 2' 35' C4' CS' t)
a = (C1, C2,3 C3,P C6,0 C7,0 t)

E f (Ci, C2, C3, C4, C5, t.) -a.

2j= g (C, C2, C3, C6, C7, tj) -a 2j

E 2j a computed

a : lj} experimental
,t

t.

With first approximations of the constants, a Taylor series expansion gives:

alj + Elj = f (C1, C2, C3, C4, C5, tj = f (Cot ) + A CI f

+ C2 3e2 + A C f + A C f

2l 32 2

+ AC f [A C1 2 [A+ 2__2f

IA C3]2  [A C4]
2  [A C12

+ 2! f c2 +  21 f c4 +  2! f c2 + """
2? 2 ? 4 25

a2j + E2  = g (C1, C2, C3, C6, C7, tj) = g (CO, tj) + A C gl

+C2 2  + A C3 e + A C 4 9
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[A C112 [A C21 2

+ACsgc + 2! c 2! c
5 12 2

2 2 2[AC [AC [AC 5 ]

+g gc + 2 g + ....+(higher order
+P2 2! 2t c

1 32 62 72 terms)

Where:

a1l 2 are experimental points of' data sets one and two, respectively.

E E are the errors between the data and the theoretical points of .
lj, E2j

data sets one and tw% respectively.

f (C0, t) = f [initial guesses at constants and initial conditions (al), t]

g (Co, t) = g [initial guesses at constants and initial conditions (ct2), t]

A C. is the change in C . between successive approximations.1 1

are the partials of f and g, respectively, with respect to C1
1 1

fci2 gci are the second partials of f and g, respectively, with respect

Assuming that the A C's are small such that the second and higher order

terms can be neglected, the following set of equations result:

aLj + Elj f (Co, t) + A C1 fc +A C2 fc2 + A C3 fc3 + A C4 fc4 + A Cs fc5

a2j + E 2j g (Co, tj) + A C1 gc + A C2 gc2 + A C3 gc3 + A C6 gc6 + A C7 gc7

Let the residuals be the error at each point that result from using the

initial guesses of the constants and initial conditions.
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R2  [a - f (Cot)] 2 [A C f + A C f +A C f
alj j 0 1 2c2 3c3

+AC f + A C f E 2
4
4 c 5 -~ El

2 2R ( [ - g (Co' tj)] [A Cg + A C2  + A C3
2j 01 2 3

+ A C6 g +AC 7 gc - 2 ]

Introducing least squares theory, the following results:

3 R2

0 = _ 2 [A C1 f + A C f + A C3 f + A C4 f + A Csfc - E ]f1) C c jC

3~~~ A C 6 g

6 7

a

0 = 2j 2 [A C1 g + A C 2 g + A C 3 g + A C6  c+ A C 7  -c E2j 1gc.
3"A C. 1c g2 g3 g6 g7

In matrix notation:

[A] [AC] = [RI

Let Hik =f f + gc gc
i k i k

E H E H E H E H E H E H E H

El H EZi E H ZlH El H EZ E H
21 22 23 24 25 26 27

E H Ei El E H E H E H E H
31 32 33 34 35 36 37

[A] E EH El H EZ ElH ElH ElH Eli
41 42 H43 44 45 46 H47

ElH51 Eli52 EH5 3 Eli54 ElH5 5 ElH56 Ei 5 7  'V

Eli 6 1 Eli 6 2  163 Eli 6 4 Eli 6 5 Eli 6 6  67

):I{71 );i172 'I173 ):i174 );i175 ):i176 ):I177 .]
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ZE f + E

1 C 2  1c

E E f + E21c 3  C3  A C3

SE fc + E2 g A C5
E 1  c6 E2  A C6

A C7

E1 fc +E 2
E Ef C+ E2gc76

EEfc7 + c 7

The sumation is from 1 to N, where N is the number of data points in

each data set.

fc6 fc7 , 9c4, gc5 do not appear in the equations and are equal to zero.

set, as opposed to the common set of coefficients used by all data sets.

b. Parametric Equations

(1) Derivation of Generalized Parametric Differential Equation for
Translational Motion

Consider equation (40):

+ V2 [Cx + Cx2 e + C (V -V)] cos 0 cos (43)

P A V2  e 2]

2-m ' Na Na3  V

+ LAV2  C CN ] Ksin e cos 4
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4 m V Ypa + Cypa 3 
2  sin

+ p A pd V2  c 2  sin cos
4 m V [Cypa + Cypa3 V

p A V2 C
2m N (6 BCos -

6 A sin ) sin $

+- A A V2Cos + 6B sin @)sin 6 cos =0

A

Let: c x c
1 0 10 =  m X2

C = ___011 2 m CYpa

C5 = ZoC 14 = CN 6A (Y-)
p AAA

C6 3 0 cl 12 "46 M dB y a
c = 2-'3 p -

2m mX
(pAA

c c 6c

8 2m Na

C = pd C
9 4 m Ypa
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Rewriting Equation (43) with these definitions, one obtains:

i 2  2
v xe + v[C 7 + C10 C (1 13 (V- Vo )1 cos 0 cos ' (44)

-V 2 [C8 + C11 E2] (sin - sin 0 cos ip)

8 C1 1 -wv

+ V [C9 + C12 2] (± sin ' + sin 0 cos ')

2V [(C15 cos 4 - C14 sin 4) sin ' - (C14 cos

+ C15 sin 4) sin e cos ]= 0

To perform differential corrections the 3X/3C. is required where C. the

initial conditions on Xe Ye, Z e' X , Y I Z ,and the aerodynamic coefficients
ee e e e

(C7 - C15). The DX/3C. is obtained through integration of aVX/PC., For

computational purposes 3V x/PC. is expressed in generalized form such

that it will be applicable to all C.'s.J

Taking the generalized partial of Equation (44) with respect to C., the

following is obtained:

vXe + V (2 C 7 + 2 C0 2 + C1i (3 V - 2 V ) ) cos e cos ' (45)

2 V (C8 + C e2) sin sin 0 cos ')

+ (C9 L C12  
2) (± sin ' + sin 8 cos ')

2 V [(C15 cos 4)-C 14 sin 4) sin ' - (C14 cos

+ C15 sin 4) sin 8 cos C] C. = - K. BC /BC.

where: K. = the constant multiplier of the specific C. from Equation (44),.=_ 2  v . w .
for example, if C = 8' then K V (Isin V sin 0 Cos
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It should be ncted that v/V and w/W are trigonometric functions of the
missile angles and are assumed to be independent variables. 0 and t are
functions of 6m, V ,V Vye, and VZe* However as 6m and 4 m are considered
known and the anguar components Y and 6 small, 0 and have also been desig-
nated independent variables. It should be pointed out that new profiles of
0 and 4 are computed for each iteration thus minimizing this assumption pro-
viding convergence is being achieved.

aV/aC. must be expressed in terms of V xe/9C J and is done as follows:

2 2 21
V= [Vxe + V +V

~Xe Ye +Xe

Taking the generalized partial derivative, one obtains:

= [2 V VxePCj + 2 Vye aVy/C. + 2 VZ 3C V C]av/acj = I e X -e Y-.e

[Vx2 + VY 2 + VZe

VXe 9Vxe Vye Ve VZe V ze

ev/3c +  vYe . + ve . (46)
J-ac V c -V9C V 3C.

Substituting Equation (46) into (45), the generalized partial derivative

may be written as follows:

Vx Xe +VX e Vye Vye VZe VZe B (47)

a +A 1  V 3C. V 3C. V C.] 1
3 3

• 2

where A1  V(2C 7 +2C 0  +C 13 (3 V -2 V)) cos0cos

2 W e o
- 2V ( 8  Cl e) ( .sin4'-v i ecs

w8l V
+ ( 9 + C12 €2) (W sin 4' + Vsin 0 cos 4')

- 2 V [(C15 cos 4 - C14 sin 4) sin

- (C14 cos + C15 sin 0 sin 0 cos 4']
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B1 -K.

Consider the remaining two equations of motion:

• 2  €2

Vye [C + C1 3 (V - Vo )] cos 0 sin 'p (48)

2 2 v w
+V [C8 + C1  ] ( cos'p + -sin e sin ')

w V
-V [C9 + C1 2  2 cos 'p- sin e sin ')

+ V2  (C CC 1 4 sin €) cos ' + (C1 4 cos

+ C sin ') sin 0 sinp]= 0

2 2 2 2w
VZe [C7 + C + C13 (V - Vo)] sin 0 + V [C8 + C I cos 0(49)

+V[C9 + C1 2  
2 ] cos +V 2 (C 1 4 cos + C1 5 sin ) cos 0 - g = 0

Similarly, as before, the generalized partial derivatives of Equations

(48) and (49) may be expressed in the following form:

e+A [Xe Xe Vye ye + VZe Zej = B (50)
=3 2 V 3. V0C. V =5 2
J J J J

a A3  V C. V DC. V aC. 3 (51)3 J J

= €2

where: A 2  V (2 C7  + 2 C0 + C13 (3 V -2V)) Cos 0 sin'p

2 v w+ 2 V (C8 + Cli £2) (1cos ' + Vsin 0 sin i)
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2 w v(C9 + C 2 2 C sine sin*)

+ 2 V [(C15 cos c-C 1 4 sin 4) cos

+ (C 1 4 cos + C1 5 sinin i

B = -K. (of Vye equation)

2
A 3- V (2 C7 + 2 C 1 + C13 (3 V- 2 V0 sin 0

+ 2 V (C8 + C 2 c±os I
8 1 V

+ (C9 + C1 2 c2) . cos 0

+ 2 V (C14 cos 4 + C1 sin 4) coso

B 3 =-K. (of VZe equation)

(2) Derivation of Parametric Differential Equations for Approximate
Six-DOF Equations

Consider equation (32):

* cos - M sin - Mmq ,os 0 -Mp, sin 0 cos (S2)

I- - (+ g cos O/V) p -X
M6 I

y

- 2 sin 0 (0 + g cos e/V) ip 0
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As previously stated, the term, g cos O/V, is considered a constant in

taking the partial derivative of Equation (52).

'cos -M sin, -M qcos o- sin 0 cos (53)ma mq npa

II;Mm __- (0 + K) P 2 sin 0 (o + K = 0

yg

where: + 4 + (VREF -V)]
ma I ma ma3  ma5  ma

y V

- 22SM q = Ad [C + C 2 2 1y/md21

mq 2 V I mq mq2  N s[ yA

M q A d p C + Cn 2 + C e4 + C 2 1x/md2]
npa 2 VI npa npa(3  npa5  Na x

Vy
M = .qAd [Cm6 (6B si - 6A cos c] )

M A d [Ccs +6 B sin f]

m2 si n = sin + sin 0 Cos

K = g cos 0/Vg

To perform differential corrections, the p/C. is required where C- the
initial conditions on 0, ', 0, $, and the aerodynafic moment coefficienis.
The 35pPC* is obtained through integration of 3i/KC. For computational pur-
poses ai Cj is expressed in generalized form such that it will be applicable
to all C.'s. The angular motion reduction follows the completion of the roll
and tranlational motion reductions and thus the quantities V, " and p are
considered known and can be designated independent variables.

Taking the generalized partial of Equation (53) with respect to Ci, the
following is obtained:
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.. 2 3M
cos 6 sin 0 M- cos 2L - sin ac a (54)

3 . 3G. ma 3C. 2

mci COS + mq C 3 Iz
-M cos 0 cos + M sin 0 sin -a sin cos nPa De

np C npt 3G. 32 9C.
II

20j 36
-I a~a 2sin 0 (o* + Kg Ca 2 sin O 0 ai y 3 3 3

- 2 cos 0 (0 + Kg) - F. 3C./3Cj

where: F. = the constant multiplier of the specific C. from Equation (53);

for exampleif C. = C , then F. = I A d 2 sin .for axml~f3 m3 y J

2 .2-
From the definition of = sin a, the following generalized partial

derivative is obtained:

3C2 2 sin cos + 2 cos 2  sin 0 cos 6 - (5
3c-. 9C ac.(s

J 3C

2 2

cos 6 sin 2 3  + cos2  sin 2 0 -0
3 3

Substituting Equation (55) into (54), one obtains:
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cos 6 "sin - M cos --- M coso a (56)a c ja c .j m a a c j m q a

+ Mm sn eae . a , a
+ M isin0---M cos 0 cos + M sin e sin

mq . npa a. npa -

p Do 2 si 6 + 2 si 0 o 0-P I ac. a2 .sa0.(0+Kg) ac. n-2cos0(

y 3 j J
a

+ Kg)

IJ
aM * 3M 3M2__a a

aam0Cs anpat 2__[sin + o icos os c [Cos2 0 sin 2

2 32 32 ac

w cose2  sin 2 ] F ac /ac

Equation (56) may be written in the following generalized form:

whee: A, 6n

a¢ o 0 am a
2c- cos 0 + K [si a + Cos m 1

ac= l

B, 2M sinM

y

ii9



3M
C1 = - cos + M sin 6 sin - [sin mma npa a

3e2  2

D=- M cos - 2 sin 0 (+ K)
mq g

G = -F.

From the definitions of Mma , Mmq , Mnpa, the following partial derivatives

are used in Equation (56):
ma q A d [C + 2 C

M ma3
3M q d" [Cmq2]

a: 2  2 V

y

3M - 2npa qA [ +2
2 2c npa3 Cnpas

Consider the remaining equation of motion used:

- M a sin 0 cosp - Mmq (O + Kg) + Mnp a sinp + Mm60 (57)

I
+ cos 6 p a + 2 cos e sin 6 = 0

y

Similarly, as before, Equation (57) may be expressed in the following

generalized form:

30 30 3 3 P

30. +A2 +B 2  +C2  -+D 2  = G2j
J J J 34
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. Iw e A2  -p4 sin 0---M cos cos 0 + cos2

amre am aos 2

cos sine 0-f- 0 sin -- M-. ] cos 2  sin 2 0

B = -M
mqE2 mq

SC2 = Ma sin * sin 8 + Mnpa cos P

aM am m[O MR + cos sin e m._a_- sin - nPa] cos 2 6 sin 2
a 2  ae2  as2

o D D2 =p cos 0 .. + sin 2 o6n

G G2j =-Fj

~(3) Derivation ot Partial Derivations for Approximate Roll Equation

Consider the equation:

3 Dnsin ) - C 6

x "x

tan e Cos - sin 6) + Cos 0

The experimental data is provided as the angle *.

The initial conditions are and

2
q a [Cp + C (Vo- V)] F ac PC/c

a C. 2 V I a C. (C1 , IP 0.- ~ ~
x
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Use is made of the equality p 4, - 4 sin 0. 0, 4, i, V and q are

considered known and therefore are designated independent variables. This

reduces the complexity of this problem as most higher order terms (0, 4, 4)

now vanish. The spin (p) was computed during the integration of the equations

of motion, and as (4-4 sin 0) always appears as a pair, p is substituted.

4I
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SECTION V

'FIICI WIN (1I1 APPI,1 CN1'I ON

1. COMPUTER PROGRAMS

The equations derived in the previous section are applied through five

computer programs interconnected through the use of overlays.

The five programs consist of:

1. PRENUT - A modified linear theory program used for initialization.

This program provides sufficient initial guesses and program con-

trols to properly execute the numerical integration data reduction

process.

2. EARTH HEEVE - This program analyzes the translational and roll

motion of the projectile, determining the earth-fixed velocity

vectors and roll rate. It transforms the measured fixed plane

angles to missile angles and determines the axial force, normal

force and roll coefficients.

3. MODYAW - This program makes a final complete modified linear

theory analysis of the rolling, translational, and angular motion

of the projectile from the experimental data.

4. TRIANGLES - This numerical integration program is utilized to

analyze the angular motion of one, two, or three experiments

simultaneously. Several options are available to the user and

can be utilized for obtaining non-linear aerodynamic coefficients.

S. TRIHEEVE - The translational motion of up to three experiments is

fitted by this program. Options are available to assist the user

in obtaining non-linear aerodynamic coefficients.
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Each program's inputs and outputs exc, pt MODYAW are discussed in the

following section. A diagram showing pictorially the flow of a typical

reduction of three sets of data which are to be reduced simultaneously by

TRIHEEVE and TRIANGLES is given as Figure 3.

DIRECTION COSINES
EXPERIMENTAL x, Y, Ze
EXPERIMENTAL ROLL ANGLE

PRENUT
INITIAL

FITS

EARTH
HEEVE

TRANSFORM TO
MISSILE

MODYAW
FINAL LINEAR
THEORY FIT

TRIANGLES I
SANGULAR a

: MOTION

TRIHEEVE
TRANSLATIONAL

F0 MOTION

After three designated experiments are reduced individually,
a multiple TRIHEEVE reduction is made followed by a
multiple TRIANGLES reduction.

Figure 3. Data Reduction System Flow Diagram
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a. Program- PRENUT

Purpose - Perform a linear theory data reduction and provide estimates of

initial conditions and aerodynamic coefficients for-the EARTH

HEEVE program and the TRIANGLES program.

Inputs Earth fixed direction m, ne' n e

cosines

Earth fixed Xe Ye' Ze versus t

coordinates

Roll angle f

Projectile physical m, Ix, Iy, CG, d, £

properties

Estimates for CNa

Outputs - Experimental data 0, ', 4, Xe Ye' Z e't

Fitted values of 0 'm versus t

Initial conditions X X Y e Y e Z , e versus teO ' Xeo Yeo Ye e0  Ze0

m 0 0 60' 00$ O' PO

Aerodynamic C 0 ' Cm ,' Cmq, np C
coefficients

Comments: The roll angle, 4, is measured from 00 to 3600 degrees and must
be correctly (exactly) unwound to be a continuous accumulative

function of time (00 to ). This is accomplished in a subroutine

contained iii PRENUT.
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Equation of Motion - PRENUT

(X + iW)X (X + iwXa= Ke l e + Kze 2 2 e + K4

2 4

where: K1  amplitude nutation vector

K2  amplitude precession vector

xI  nutation damping factor

n2 precession damping factor

W nutation frequency Xe)

W 2 precession frequency 2 + 42 Xe)

K 4  yaw of repose vector

Xe distance traveled

1 nutation vector orientation

2 precession vector orientation
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b. Program - EARTH PEEVE

Purpose -- Perform a numerical integration reduction of the earth-fixed

(translational) equations of motion (equations 40, 41 and 42)

determining best fit to Xe, Ye' ze"

Inputs - From PRENUT

Experimental data e, , 4, X el Y' Z e versus t

Fitted data em, '0 versus t

Physical properties m, Ix, I , CG, d, 9

Estimates for CX0, C ma Cnpa, Cmq, Clp

Initial conditions X e X e Y e Y e Z versus t

m0  e m 0  e0  e e0 PO

Outputs - Experimental data 0, X, e ye z versus t
e ee

Computed data 0,'p versus t
m

Computed initial Xe e 'Ye ,Y e Zeo

codtos0 0 0 0 0 0conditions

Computed parameters V, q., p, ye versus t (from best fit)

Computed coefficients CX0, CNa, Cyp a, CXV, CX2 Clp, C16

Comments: The final numerical integration roll fit is performed in this

program with final values of Clp and C determined. Exact

transformation from measured fixed plane angles to missile angles

are performed using the theoretical Xe, Ye' and Ze velocity profiles.
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Equations of Motion - EARTH HEEVE I

-A 2
V = - qC +C ] cosincos

e m A X 2 v
+ q CN +CN 2] sin

-A 2
q - CNC 1 sin cos p

A pd +2] w

m 2 V Ypa Ypa 3  Vsin

q-A c + C v
m 2 V Lypa Ypa 3  v sine cos

A 21q - 2]C +C c cos e sinVye = . q [ X  2

A 2_ m[Na CNa3 ]vco

- C + CN e]2 sin 6 sin

2w

2v
- -Ap d [yp £ ye 2] sin e sinA 2 dI

Vd = qs[C + Cx ssin

vZe qm CCX+C X2 ]si 0

q -q [C + CN c cos e

2vTAPm V [CCp + Cy e cos 6 g

m 2 V Ypa Y [CIS

V 2i vPC p + I 1 6 LdCCiX X
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c. Program - TRIANGLES

Purpose - To provide a best fit to the angular motion experimental trans-

formed data (0m, ) using the equations of motion (equations 30
m M)

and 31). To provide a multiple fit of more than one experimental

case using common coefficients for all cases.

Inputs From EARTH HEEVE

Experimental data 0, ', 1, Xe, Ye' Zei versus t

Transformed data 0, m versus t ]
Computed data V, q, p, ye versus t

Computed coefficients CX0, CNa, Cypa, CXV , C X2

Estimated coefficients Cma , Cmq, C p

Estimates for 0 , 'm0, j
Physical properties m, I x  I, CG, d, £

Initial conditions Xe0 , Xe0, Ye0 Ye, ze0' Ze 0

Outputs - Experimental data 0 , Xe, Ye Ze versus t

Best fit 0m' 'm versus t

Computed data PR versus t, I x/I

Computed coefficients CX0, CNa Cypa' CXV' CX2

Final computed C m, Cmq C np plus non-linear terms

coefficients
Initial conditions X X Y Y Z Z0

e e e0  e0  e0  e

mO 0 O
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Comments: The final aerodynamic moment coefficients Cma, Cmq, and Cnpa,

(functions of angle of attack and Mach number) are derived from

this program both for single and multiple fits.

4 ,1
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Equations of Motions - TRIANGLES

u = - qC + g sin 0C- v w + 0 o

- A - d w
v -C +  -- Acos 6 [u+wtanel (2)

m C~ v m2 VYpa V

-A w A p d v 3)
W q - qCN, ± - q m 2 V CYpax g co + sn

""-A d p_ dC p  6 i 1+6O°

q I2V + tan 0 [cos 0 ' - i 0 sine] + 0 '/Cos 0 (4)
I 2 V ipx

p =-Psin 0

qAd 2 [ 4 + C 6 +C C (V -V)] (5)= q -"[ma + mc3 mct 5 ma7 ma v 0

A d2
+ q 2 V I mq2

-A d2 p C e2 +4] v
2 V I- [npc+ npca3  npa 5

-d [cm (6B s:n @ A Cos ]

II .2

cos 0 - 'P cos sinO

y

2 + C 4C 6 + (V0  V)]-
= "q -"[Cma + Cma3 c ma 5 e mell7 +C ~V  (

Y (6)

2A d2

+ [Cmq + C ] cosO

1mq
2
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22 4 +4w
-+ I [C +C 

2np V 3  2 pci5 4]

+--Ad [Cm (6Bcos + 6A sin @)]

y
.

+ e sin +0 p #/cos 0

y
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d. Program - TRIHEEVE

Purpose - To provide a best fit of the equations of motion to 
the measured

X, Y, and Z data. To provide a multiple fit of more than one

experimental case using unique coefficients for 
all cases.

Inputs From TRIANGLES

Experimental ,, Xe, Ye, Ze versus t

Best fit 0 'm versus t

Computed coefficient CX0, CNa, ypa, C XV

(estimates)

Computed initial X , X$ Y IY , Z Z

conditions 0  e o' 0e 0 e0

Computed "PR vs t

Physical properties m, IX1 I,3 CG, d, k

Outputs_- Final best fits of Xes Ye$ Z versus t

Computed data V, q, p, *e versus t

Final computed CX, C N, C Y as function of Mach number

coefficients and angle of attack

Transformed 6m and based on new velocity profile

Comments: TRIHEEVE computes the final best value 
of the axial force,

normal force, and Magnus Force coefficients both 
for single

and multiple fits.
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Equations of Motion - TRIHEEVE

_ q A .[C x +i 2
VXe m Cx 2 sina + Cxv (V - VREF)] cos e cos

q CA 2 vVi+ [CN sin a] i -sin i n - cos

mA d[CN + c .23

[C c sin a] s
m 2 V yp + Ypa 3  v 4in+ s

+ qm [-CNSA (sin 4 sin + cos 4 sin cos ')

+ CN6B (cos 4 sin ' - sin 4 sin e cos )]

q qA [C+ CX2 sin2 a + CXV (V - VREF)] cos 6 sin
Vye -m X 2x

qA [N+ si2 v w.
m (C sin a] [V cos ' + Ksin a sin i

+ vA p d [C Cp sin 2 a] ILcos 1 -sin sin 6]

m 2V Ypa +Ypa 3 si a]Evo

Am [ " CN6 A (sin 4cos '-cos 4 sin 8 sinp)

+ CN6  (cos 4 cos + sin 4sin 6 sin p1]

qz + __A [C 2 sAn

v + Cx 2 sin a + C (V -VREF)] sin e A [CN

2w+C sin J-cos 0
Na3 S V

- I A.T Iy + 1 sill v - A Cos" i11 2 V " p p'It -. o COS

+ CN6 sin 4] cos 8- g
B $
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I!

[- 2. NUMERICAL ROUTINES

All numerical integration performed in the previously described programs

utilize the fourth order Runge-Kutta method. It is acknowledged that there

are extensive numerical integration techniques in existence, many of which

are claimed to be much more efficient than the Runge-Kutta method. The two

primary reasons for implementing this technique are that (1) Runge Kutta

methods are self-starting, the interval between steps may be changed at will,

and in general, they are particularly straightforward to apply on a digital

computer, and (2) they are comparable in accuracy and often more accurate

than corresponding order predictor-corrector methods except that the integra-

tion interval is a more significant parameter in terms of solution accuracy.

Experience has demonstrated this technique to be reliable, stable, and of
sufficient efficiency from a storage versus execution time viewpoint given

the form of the differential equations solved for as previously described

(equations of motion and partial differential correction equations). During

development of these programs, test implementation of a modified Adams-Moulton

predictor-corrector routine was made for purposes of comparison. The results

indicated that both integration techniques achieved the same degree of accur-

acy and execution time. Comparable execution times resulted from the fact

that the predictor-corrector method had difficulty in starting and time step

adjustment.

The matrix inversion routine implemented in all the programs utilizes a

Gaussian elimination method. This is a direct method (versus iterative) and

eliminates truncation error. Over a period of years during which many sets

of test data were reduced, no problems were encountered with either the

numerical integration or the matrix inversion methods.

Additional details on these two numerical routines may be found in

references 26 and 27.
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SECTION VI

CONCLUSIONS AND FUTURE ACTION

An extensive set of data reduction computer programs for analyzing aero-

ballistic range data has been developed and sequenced to produce a sophisti-

cated system. These programs are primarily geared to the reduction and

analysis of spin-stabilized or spinning statically stable projectiles with

small configuration asymmetries,

The need exists for a similar set of programs tailored toward the analy-
sis of rolling or non-rolling projectiles with configurational and mass

asymmetries. In this manner, the ballistic range could become a useful tool

in the testing of winged re-entry bodies and non-symmetric nose cones.
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APPENDIX I

COORDINATE SYSTEM IDENTITIES-TRANSFORMATIONS

i
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Angular Identities

Missile Angles

1 2 2 2sini n [i + cos m sin m

sin Om  
=  sin Xm/COS

sin e = sin c

sin *m = - sin em cos Xm

tan $m = - tan n/Cos

Missile Angles Earth Angles

6m  sin-in [sin y e/Cos m]

=sin-I [sin m/Cos Ye + 6

in e e

Angular Identities
Earth Angles

tan0 tan cos

Missile Velocities -Missile Angles

v = - V sin

w = V cos [ sin e

m ml

U = V Cos xm cos im
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Missile Angle - Velocity Relationship

ANGLE SINE COSINE TANGENT

Xm 2
+ 2 + w2 u2 + V2 + w2 2 + v2

-v + w -v

v2 +V w2 u2w

w U W

2 2 2 2 2 u
U W U +Wu + u w+ u

w U wam
mu2 2 2 2 u

jU

m v u v

-+w u IV

2 2 22 2ctll1 4u2 +v2 + 2  4" + v2 + w2

;U + V + W - ~u

Trajectory Angle - Velocity Relationships

ANGLE SINE COSINE TANGENT

YVze VXe2 + Vye e Ze

YV 2 + VYe2 + Vze
2  IV Xe2 + VYe 2 +V 2 VXe + VYe

VYe VXe VYe I
Xe + Vye VXe2 + Vye Xe
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Transformations

Missile to Earth

V =u cos 8 cos - v sin + w sin 0 cosXe

VYe =u cos 6 sin + v cos + w sin 6 sin (

Ze
IV VZe =-u sin 0 + w cos 6

Earth to Missile

u = VXe cos e cos + Vye cos 6 sin VZe sin 6

v = - VXe sin + Vye Cos

W = VXe sin 6 cos + VYe sin 0 sin ) + VZe cos O

Direction Cosines to Fixed Plane Angles

0= -sin (n)

sin-l e/Vme2 +P 2 )

where: e mep are the direction cosines of the missiles X axis relative

to the range coordinate system (fixed plane).
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